Universality in stochastic exponential growth.

نویسندگان

  • Srividya Iyer-Biswas
  • Gavin E Crooks
  • Norbert F Scherer
  • Aaron R Dinner
چکیده

Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality of residence-time distributions in non-adiabatic stochastic resonance

– We present a mathematically rigorous expression for the residence-time distribution of a periodically forced Brownian particle in a bistable potential. For a broad range of forcing frequencies and amplitudes, the distribution is close to a periodically modulated exponential one. Remarkably, the periodic modulation is governed by a universal function, depending on a single parameter related to...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Pricing of Futures Contracts by Considering Stochastic Exponential Jump Domain of Spot Price

Derivatives are alternative financial instruments which extend traders opportunities to achieve some financial goals. They are risk management instruments that are related to a data in the future, and also they react to uncertain prices. Study on pricing futures can provide useful tools to understand the stochastic behavior of prices to manage the risk of price volatility. Thus, this study eval...

متن کامل

Stochastic Comparisons of Series and Parallel Systems with Heterogeneous Extended Generalized Exponential Components

In this paper, we discuss the usual stochastic‎, ‎likelihood ratio, ‎dispersive and convex transform order between two parallel systems with independent heterogeneous extended generalized exponential components. ‎We also establish the usual stochastic order between series systems from two independent heterogeneous extended generalized exponential samples. ‎Finally, ‎we f...

متن کامل

Stochastic Schemes of Dielectric Relaxation in Correlated-Cluster Systems

Unlike the classical exponential relaxation law, the widely prevailing universal law with its fractional power-law dependence of susceptibility on frequency cannot be explained in the framework of any intuitively simple physical concept. The resulting constancy of the ratio of the imaginary to the real parts of the complex susceptibility, known as the “energy criterion”, has a pleasing simplici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 113 2  شماره 

صفحات  -

تاریخ انتشار 2014